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The vortex line density of turbulent superfluid 3He-B at very low temperature is deduced by detecting the
shadow of ballistic quasiparticles, which are Andreev reflected by quantized vortices. Until now the measured
total shadow has been interpreted as the sum of shadows arising from interactions of a single quasiparticle with
a single vortex. By integrating numerically the quasiclassical Hamiltonian equations of motion of ballistic
quasiparticles in the presence of nontrivial but relatively simple vortex systems �such as vortex-vortex and
vortex-antivortex pairs and small clusters of vortices�, we show that partial screening can take place, and the
total shadow is not necessarily the sum of the shadows. We have also found that it is possible that, upon
impinging on complex vortex configurations, quasiparticles experience multiple reflections, which can be
classical, Andreev, or both.
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I. INTRODUCTION

The context of this work is quantum turbulence1 at tem-
peratures T�Tc, where Tc is the critical temperature. In this
regime, the viscous normal-fluid component and the mutual
friction can be neglected, and quantum turbulence takes its
purest form: a tangle of quantized vortex filaments which
move in a fluid without viscosity.

Experiments at these very low temperatures have pro-
duced intriguing results in both 3He and 4He. In 4He, Mc-
Clintock and collaborators2 discovered that quantum turbu-
lence, initially generated by a moving grid, quickly decays,
despite the absence of viscous dissipation. In 3He-B, Fisher
and collaborators3,4 found that quantum turbulence, initially
confined in a small region, spreads in space and decays.
These and other results raise challenging questions to low-
temperature physicists and fluid mechanicists alike.

In the case of homogeneous quantum turbulence, the tur-
bulence’s intensity is characterized, at least in the first ap-
proximation, by the vortex line density L �vortex length per
unit volume�, a quantity which can be measured using tech-
niques such as second sound and ion trapping. From the
vortex line density, the typical distance between vortices, �
�L−1/2, can be inferred. The current understanding of quan-
tum turbulence5 at very low temperatures is that, at length
scales much larger than �, the nonlinear interaction between
the vortex lines results in partial alignment and polarization,
such that, for k�1 /�, the superfluid supports an energy cas-
cade from large scales to small scales, which manifests itself
in the classical Kolmogorov energy spectrum Ek�k−5/3,
where k is the wave number. Numerical simulations per-
formed using the vortex filament model6 and the nonlinear
Schröedinger equation model7,8 confirmed the existence of
such spectrum. The energy cascade implies the existence of
an energy sink, and the natural question arises as what
should be this energy sink in the absence of viscous dissipa-
tion. The likely energy sink is acoustic: it is thought that
kinetic energy decreases due to the emission of phonons by
Kelvin waves.9,10 Kelvin waves are helical displacements of

vortex filaments which rotate with angular frequency ��k2.
To efficiently radiate sound, �, hence k, must be very large:
at the length scale of vortex separation, �, sound radiation is
negligible. To bridge this gap we have to appeal to the exis-
tence of a Kelvin wave cascade process which generates
smaller scales, and, in analogy to the classical Kolmogorov
cascade, shifts the energy to the required high wave numbers
k. Numerical simulations revealed that vortex reconnections
decrease the kinetic energy directly11,12 and trigger the
Kelvin wave cascade13

The details of this scenario still need to be properly un-
derstood. First of all, the possibility has been raised that
there is an energy bottleneck between the Kolmogorov cas-
cade at k�1 /� and the Kelvin wave cascade at k�1 /�.14,15

Second, recently experiments16,17 suggest the existence of a
new form of turbulence: a less structured one-scale “ul-
traquantum” turbulence state �also called “Vinen”
turbulence18�, which decays as L� t−1, in contrast to the
more structured multiscale “semiclassical” quantum turbu-
lence which decays as L� t−3/2 �consistently with the k−5/3

energy spectrum�. Third, the nature of the spectrum of L is
still unclear: if we naively interpret L as a measure of vor-
ticity, the spectrum of L should increase with k if Ek�k−5/3,
but experiments show otherwise.19–21

Homogeneous turbulence is clearly the most important
turbulence problem, but, as mentioned before, there are also
experiments in which turbulence is confined in a fraction of
the experimental cell, that is to say it is inhomogeneous and
it can spread in space. Examples of inhomogeneous or an-
isotropic turbulence are turbulence generated by a vibrating
wire,22,23 or grid,24 fork,25 counterflow,26 and rotating
counterflow27,28 in 4He, and the twisted vortex state accom-
panied by a moving vortex front29,30 observed in rotating
3He-B. Inhomogeneous turbulence may seem less generic
than homogeneous turbulence, but is equally worthy of at-
tention. The reason is that at very low temperatures, in a pure
superfluid, the key difference31 between classical and quan-
tum fluid behavior becomes more apparent: vortex reconnec-
tions are forbidden in a classical inviscid Euler fluid, but can
take place in a superfluid.
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The experimental study of quantum turbulence would be
greatly facilitated if better visualization techniques were
available. Classical turbulence can be investigated using a
large variety of methods: ink, smoke, Kalliroscope flakes,
hydrogen bubbles, hot wire anemometry, laser Doppler an-
emometry, particle image velocimetry �PIV�, etc. On the
contrary, there are few techniques available in liquid helium;
the most used are second sound and ion trapping in 4He and
NMR in 3He. A drawback of these techniques is that they
only measure quantities which are averaged over a large re-
gion, and we know from the study of classical turbulence
that it is important to have local information about fluctua-
tions. Fortunately this problem has been recognized: work is
in progress to build smaller sensors, and new measurement
techniques have been developed. In 4He, at temperatures
above 1 K, a major breakthrough has been the implementa-
tion of the PIV technique using micron-size spheres made of
glass and polymers32 and solid hydrogen.33

In the more difficult regime of very low temperatures
3He-B, the Andreev reflection technique pioneered at Lan-
caster has been a major advance in providing experimental-
ists with a tool for studying turbulence. The technique is
based on the fact that the dispersion curve E=E�p� of qua-
siparticles is tied to the reference frame of the superfluid so,
in a superfluid moving with velocity vs, the dispersion curve
becomes E�p�+p ·vs, where p is the momentum.34,35 Thus a
side of a vortex line presents a potential barrier to oncoming
quasiparticles, which can be reflected back almost exactly
becoming quasiholes; the other side of the vortex lets the
quasiparticles to go through. Quasiholes are reflected or
transmitted in the opposite way. The vortex thus casts a sym-
metric shadow for quasiparticles at one side and quasiholes
at the other, and, by measuring the flux of excitations, one
detects vortices and infer the vortex line density. A similar
problem of interaction of rotons with quantized vortices in
4He and formation of shadows for R+ and R− rotons was
considered by Samuels and Donnelly.36

A related problem of Andreev reflection within the vortex
core was analyzed in Refs. 37 and 38 �see also the book of
Volovik39�. The analysis in cited works was concerned with
the bound states, whereas our concern is the propagation of
thermal excitations outside vortex cores.

In a recent paper40 we have solved analytically the semi-
classical equations of motion of ballistic quasiparticles in the
presence of a single stationary vortex. When extrapolated to
a disordered vortex tangle, our result is in agreement with
simpler order of magnitude estimates, which have been
used34,35 to infer the vortex line density in turbulence experi-
ments. The aim of this article is to develop our understanding
of the interaction of ballistic quasiparticles and vortices by
considering more complex vortex configurations.

II. GOVERNING EQUATIONS

For the sake of simplicity, we consider the problem of
motion of quasiparticles in the �x ,y� plane in the presence of
N straight vortex lines aligned in the z direction. The kinetic
energy of a thermal excitation of momentum p measured
with respect to the Fermi energy �F is

�p =
p2

2m�
− �F, �1�

where p= �p�. Hereafter we use numerical values taken at
zero bar pressure41 for the quantities which are necessary to
describe the motion of the excitation: the Fermi velocity vF
�5.48�103 cm /s, the Fermi momentum pF=m�vF�8.28
�10−20 g cm /s, the Fermi energy �F= pF

2 / �2m���2.27
�10−16 erg, and the effective mass m��3.01m=1.51
�10−23 g, where m is the mass of the 3He atom.

Let �0 be the magnitude of the superfluid energy gap.
Near the vortex axis, at radial distances r smaller than the
zero-temperature coherence length �0=�vF /	�0�0.85
�10−5 cm, the energy gap falls to zero and can be approxi-
mated by ��r���0 tanh�r /�0�.42,43 Since we are mainly con-
cerned with what happens to the excitation for r��0, we
neglect the spatial dependence of the energy gap and assume
the constant value, �0=1.76kBTc�2.43�10−19 erg, where
kB is Boltzmann’s constant and Tc the critical temperature.

The intersection of each vortex line with the �x ,y� plane is
a vortex point. Each vortex point moves with the flow field
generated by all other vortex points. The ith vortex point,
located at the position ri�t�=xi�t�i+yi�t�j generates the fol-
lowing velocity field at the point r:

vi�r,t� =

i

2	�r − ri�t��2
�− i�y − yi�t�� + j�x − xi�t��	 , �2�

where r=xi+yj, i and j are, respectively, the unit vectors
along the x and y axes, and the circulation 
i of the ith vortex
is 
i= �
; the + and − signs denote, respectively, a vortex
�anticlockwise rotation in the �x ,y� plane� and an antivortex
�clockwise rotation�. The quantity


 =
h

2m
=

	�

m
= 0.662 � 10−3 cm2/s �3�

is the quantum of circulation in 3He-B. The velocity field at
the point r created by the N vortices is

vs�r,t� = 

i=1

i=N

vi�r,t� , �4�

thus the velocity of the ith vortex point ri is

dri�t�
dt

= 

j=1,j�i

i=N

v j�ri� . �5�

In the presence of vortices the energy of the thermal ex-
citation becomes

E = ��p
2 + �0

2 + p · vs�r,t� . �6�

In writing Eq. �6�, the spatial variation in the order parameter
is not taken into account for the sake of simplicity. We also
assume that the interaction term p ·vs varies on a spatial scale
which is larger than �0, and that the excitation can be con-
sidered a compact object of momentum p=p�t�, position r
=r�t�, and energy E=E�p ,r , t�. This gives us the opportunity
to use the method developed in Ref. 44, and consider Eq. �6�
as an effective Hamiltonian, for which the equations of mo-
tion are
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dr

dt
=

�E�p,r�
�p

=
�p

��p
2 + �0

2

p

m�
+ vs, �7�

dp

dt
= −

�E�p,r�
�r

= −
�

�r
�p · vs� . �8�

Equation �7� represents the group velocity of the excitation
in the velocity field of the vortices. Excitations such that �p
�0 are called quasiparticles, and excitations such that �p
0 are called quasiholes. The right-hand-side of Eq. �8� is
thus the force acting on the excitation.

Before solving numerically Eqs. �7� and �8� it is conve-
nient to rewrite them in dimensionless form. We introduce
the following dimensionless variables:

H =
E

�0
, �9�

� =
p

pF
, �10�

Vs =
�0



vs, �11�

R = �X,Y� = � x

�0
,

y

�0
 =

r

�0
, �12�

� = t/t0, �13�

where t0=�0pF /�0=2.9�10−6 s. The Hamiltonian, Eq. �6�,
and the equations of motion, Eqs. �7� and �8�, then become

H��,R,�� = ����2 − 1�2 + �−2 +
m�

m
	2� · Vs�R,�� ,

�14�

and

dX

d�
= �

2��2 − 1�
���2 − 1�2 + �−2

�x +
m�

m
	2Vsx�R,�� , �15�

dY

d�
= �

2��2 − 1�
���2 − 1�2 + �−2

�y +
m�

m
	2Vsy�R,�� , �16�

d�x

d�
= −

m�

m
	2��x

dVsx

dX
+ �y

dVsy

dX
 , �17�

d�y

d�
= −

m�

m
	2��x

dVsx

dY
+ �y

dVsy

dY
 , �18�

where the dimensionless parameter � is

� =
�F

�0
. �19�

In our numerical calculations we shall assume the value �
=1�103. Finally, the dimensionless superfluid velocity is

Vs�R,�� = 

i=1

i=N

Vi�R,�� = 

i=1

i=N
�i

2	�R − Ri����2

��− i�Y − Yi���� + j�X − Xi����	 , �20�

where �i=1 for vortices, �i=−1 for antivortices, and

dRi���
d�

= 

j=1,j�i

j=N

V j�Ri� . �21�

III. SINGLE VORTEX

The numerical solution of Eqs. �15�–�18� which govern
the trajectory of quasiparticles and vortices requires special
care due to the absence of dissipation mechanisms. Our pre-
liminary investigations revealed that the most commonly
used differential equation solvers, such as for example the
Runge-Kutta fourth-order method, are not satisfactory, even
using a very small time step; in the case of a single vortex,
these solvers failed to conserve the total energy and the total
angular momentum of the quasiparticle by large amounts
�10% or more�. In the case of more complex time-dependent
vortex configurations, energy and momentum of quasiparti-
cles would not be conserved, but clearly we could not trust
our results if the basic conservation laws were not satisfied in
the simplest case of a single vortex.

Ideally, to build the conservation law into the numerical
scheme, the numerical method must be symplectic and con-
serve phase-space volume.45 Unfortunately the known sym-
plectic algorithms are geared to problems �mainly in the con-
text of gravity� in which the Hamiltonian has the additive
form H=T�p�+V�q�, where p and q are the generalized mo-
menta and positions, T is the kinetic energy, and V the po-
tential energy, whereas in our problem the variables p and q
appear in nonlinear combinations. The second difficulty is
the stiffness of our equations of motion, as very rapid time
scales appear at the Andreev turning points. After some ex-
perimenting, we have found that we can solve the governing
equations with satisfactory accuracy using the MATLAB code
ode15s, which is a quasiconstant step size implementation of
the numerical differentiation formulas �NDF� particularly ef-
ficient for solving stiff problems �for detailed description of
the ode15s MATLAB solver and corresponding software see
Ref. 46�. When solving Eqs. �15�–�18�, error tolerances were
lowered until the particle trajectory had sufficiently con-
verged, in particular at reflections.

To test our numerical method we determine the trajecto-
ries of excitations in the presence of a single vortex located
at the origin, and compare the results with previous analyti-
cal results.40 The velocity field of the vortex is simply

Vs�R� =
1

2	R2 �− iY + jX� . �22�

Since the vortex does not move, this velocity field is time
independent, and the governing Eqs. �15�–�18� have two in-
tegrals of motion: the first is the energy, defined by the
Hamiltonian, Eq. �14�; the second is the z component of the
angular momentum, which is
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J = �yX − �xY . �23�

The initial conditions at �=0 for our calculations are the
following. The initial momentum is �0= �1.0001,0� and cor-
responds to a quasiparticle moving in the x direction with
energy E=�0+kBT for temperature T�0.1Tc. The initial po-
sition is �X0 ,Y0� with X0=−1�104 far away from the vortex.
We study the trajectory of the quasiparticle as a function of
Y0, which plays the role of impact parameter. Figure 1 shows
results for some typical values of Y0. We distinguish three
cases:

Case 1: For Y0�0 we have no reflection, in agreement
with previous work.40 For example, Fig. 2 �left� shows the
quasiparticle’s trajectory for Y0=10; Fig. 2 �right� shows that

�2−1 remains positive at all times �, which means that the
quasiparticle retains its nature of quasiparticle. Figure 3 con-
firms that our numerical method conserves energy and angu-
lar momentum very well. The left-hand side of Fig. 3 shows
that the relative error in the energy, �h���= �H���−H0� /H0,
where H0 is the initial energy, is less than 6�10−10; the
right-hand side of Fig. 3 shows that the relative error in
computing the angular momentum, �j���= �J���−J0� /J0,
where J0 is the initial angular momentum, is less than 2.5
�10−9.

Case 2: If Y00 but �Y0� is not too large, the incident
quasiparticle is Andreev reflected, as shown for example in
Fig. 4 �left� for Y0=−10. Figure 4 �right� shows that �2−1
changes sign, thus confirming that, upon reflection, the qua-
siparticle becomes a quasihole. In this calculation, the nu-
merical errors in conserving energy and angular momentum
are �h8�10−10 and �j2�10−9, respectively. Figure 5
shows another Andreev reflection, this time for Y0=−205.

In our previous paper40 we determined the distance from
the vortex at which, if Y00, the incident quasiparticle is
Andreev reflected; the dashed-dotted �red� curve in Fig. 1
marks this location. It is apparent that there is a maximum
value of �Y0�, past which a quasiparticle with energy �p is not
Andreev reflected; this value �in our dimensionless units� is

−200 −100 0
−300

−200

−100

0

X

Y

−200 −100 0
−300

−200

−100

0

X

FIG. 1. �Color online� Trajectories of excitations with initial
momentum �0= �1.0001,0� and initial position �X0 ,Y0� with X0

=−1�104 for different values of Y0 in the presence of a single
�positive� vortex at the origin �marked by the dot�. The �anticlock-
wise� superfluid velocity field of the vortex is indicated by arrows.
Quasiparticles trajectories are solid �purple� lines, quasiholes trajec-
tories are dashed �green� lines. The dashed-dotted �red� curve de-
notes the locus of Andreev reflection.

−10000 0 10000

10

12

14

X

Y

(b)(a)

FIG. 2. Left: trajectory of the quasiparticle with initial momentum �0= �1.0001,0� and position �X0 ,Y0�= �−1�104 ,10� in the presence
of a single anticlockwise vortex at the origin. The arrows indicate the direction of motion. Right: plot of �2−1 vs time � corresponding to
the left part of the figure; note that the quasiparticle remains a quasiparticle.

FIG. 3. Plot of relative energy variation �h= �H−H0� /H0 vs
time � �left� and relative angular-momentum variation �j= �J
−J0� /J0 �right� corresponding to Fig. 2.
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approximately equal to S0=3	��0 /�p�2�269 where we used
�p=�F��2−1��0.0002�F for �=1.0001. We call S0=269
the �dimensionless� Andreev shadow of a single vortex to
quasiparticles of that particular �dimensionless� momentum
�.

Case 3: Finally, if 0�−S�Y0, the quasiparticle’s trajec-
tory is deflected by the vortex but remains a quasiparticle.

IV. VORTEX-VORTEX PAIR

The velocity field of two vortices is time dependent, thus
the Hamiltonian of the thermal excitation has no integrals of
motion. Unlike the previous case of a single vortex, H and J
are not conserved. The only quantity in the problem which is
constant is the distance between the vortices. There are two
cases to consider: two vortices of the same circulation
�vortex-vortex pair� and two vortices of the opposite circula-

tions �vortex-antivortex pair�. This section is concerned with
the former.

Two vortices of the same circulation at distance d from
each other rotate around a point halfway between them with
velocity

vrot =



2	d
. �24�

In dimensionless variables we have

Vrot =
1

2	D
, D =

d

�0
. �25�

Far from the vortices, the velocity of the quasiparticle can
be estimated from Eqs. �15� and �16�

dR

d�
� 2�2��2 − 1�� . �26�

(b)(a)

FIG. 4. Left: trajectory of quasiparticle with initial momentum �0= �1.0001,0� and position �X0 ,Y0�= �−1�104 ,−10� in the presence of
a single anticlockwise vortex at the origin. The arrows indicate the direction of motion. Right: plot of �2−1 vs time � corresponding to the
left part of the figure; note that the quasiparticle becomes a quasihole.

(b)(a)

FIG. 5. Left: trajectory of the quasiparticle with initial momentum �0= �1.0001,0� and position �X0 ,Y0�= �−1�104 ,−205� in the
presence of a single anticlockwise vortex at the origin. The arrows indicate the direction of motion. Right: plot of �2−1 vs time �
corresponding to the left part of the figure; note that the quasiparticle becomes a quasihole.
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To get a more clear picture of the problem, it is useful to
make the following simple estimates. Away from the vorti-
ces, the velocity of the quasiparticle is approximately 400. If
D=10, the velocity of the vortices is approximately 0.016.
For a typical time scale of approximately 25 to 30 time units,
the vortices travel approximately the distance 0.4 to 0.5,
which means that they rotate about the center of rotation by
an angle ���2.3° to 3°. If D is larger than 10 the vortices
move slower and �� is even smaller. We conclude that, in
the first approximation, the vortex system is static to quasi-
particles with the momentum �0= �1.0001,0�. However, if
�0= �1.00005,0�, in the corresponding time scale the vorti-
ces move by a more substantial angle, ���4.5° to 6°. If
D=10, a significant displacement can be observed for quasi-
particles with �0= �1.00002,0� and the vortex configuration
cannot be considered static.

We proceed with our calculations and consider two vorti-
ces of the same circulation at distance D=1000 from each
other, initially located at positions �Qx1 ,Qy1�= �0,−500� and
�Qx2 ,Qy2�= �0,500�. We integrate the equations of motion of
quasiparticles with �0= �1.0001,0�, keeping X0=−1�104

fixed and varying Y0. In this configuration, the relative angle

� between the direction of the incoming quasiparticle �the x
axis� and the line which joins the two vortices �the y axis� is
�=90°. Figure 6 illustrates the trajectories of the quasiparti-
cle for Y0=316 as well as the path of the vortices. Figure 7
�left� shows that the incident quasiparticle is reflected as a
quasihole; since the p ·vs term in the Hamiltonian is time
dependent, the energy is not constant during the evolution, as
confirmed in Fig. 7 �right�. We find that the Andreev shadow
of the first vortex of the pair is S1=290, slightly more than S0
�the Andreev shadow of an isolated stationary vortex�, and
that the shadow of the second vortex of the pair is S2=184,
which is slightly less than S0. Note that in this case S1+S2
�2S0.

If the relative angle � between the direction of the incom-
ing quasiparticle and the direction between the vortices is
reduced from �=90° to �=45°, the Andreev shadow of the
first vortex decreases from S1=290 to S1=272, but the An-
dreev shadow of the second vortex increases from S2=184 to
S2=205 so that the total shadow S1+S2 of the vortex con-
figuration remains approximately equal to twice the shadow
S0 of a single isolated vortex. For example, if the vortices are
located at �Qx1 ,Qy1�= �−353,−353� and �Qx2 ,Qy2�
= �353,353�, the angle is �=45°, S1=272, S2=205, and S1
+S2=477. If � is further reduced from �=45° to 14.1°, the
total shadow of both vortices increases and reaches its maxi-
mum size: S1=263, S2=242, and S1+S2=505. If ��14.1°
the two shadows merge, and the two vortices screen each
other. If �=0° then S1+S2=251 only.

Qualitatively, the same behavior is observed if the dis-
tance between the vortices is even smaller, e.g., D=100. If
the angle between the direction of motion of the excitation
and the direction of the line through the vortices is �=90°,
the shadow of the first vortex at �Qx1 ,Qy1�= �0,50� is only
S1=44.7 �significantly smaller than S0� and the shadow of the
second vortex at �Qx2 ,Qy2�= �0,−50� is S2=443.3 �signifi-
cantly larger than S0�, and the total shadow is S1+S2=488. If
� is reduced the two shadows merge when ��75°; at this
angle S1+S2=526. At �=45°, the total shadow is S1+S2
=510, and at �=0° S1+S2=469.

What happens if D is further reduced? Consider for sim-
plicity the angle �=90°: for large D the two vortices have

FIG. 6. Left: trajectory of the quasiparticle with initial momen-
tum �0= �1.0001,0� and position �X0 ,Y0�= �−1�104 ,316� in the
presence of a vortex-vortex pair; the first vortex is at �Qx1 ,Qy1�
= �0,−500�, and the second vortex is at �Qx2 ,Qy2�= �0,500�. The
solid arrow indicates the incident quasiparticle, the dashed arrow
the reflected quasihole. Right: Directions of motion of the two
vortices.

(b)(a)

FIG. 7. Left: plot of �2−1 vs time � corresponding to the left part of Fig. 6; note that the quasiparticle becomes a quasihole. Right: plot
of relative energy difference �h= �H���−H0� /H0 vs time �.
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independent shadows �one reduced in size, the other in-
creased in size�. By decreasing the distance between the vor-
tices the shadows approach each other; for distances D�16
they merge and the vortex configuration has a single shadow
independent of �, as if it were a single vortex of strength
approximately equal to 2
.

V. VORTEX-ANTIVORTEX PAIR

A vortex and an antivortex, set at distance D from each
other, move through the fluid with �dimensionless� transla-
tional velocity

Vtran =
1

2	D
, D =

d

�0
. �27�

The same estimates which we have made at the beginning of
Sec. IV apply. As before, we consider quasiparticles with
initial momentum �0= �1.0001,0� and initial position
�X0 ,Y0� with X0=−1�104 fixed and varying Y0. First we
consider the case in which the vortex-antivortex pair and the
quasiparticle move in the same direction. Let the positive
�anticlockwise� vortex be located at �Qx1 ,Qy1�= �0,500� and
the negative �clockwise� vortex be at �Qx2 ,Qy2�= �0,−500�,
with D=1000 the separation between the vortices. We find
that the total shadow of the vortex configuration is S1+S2
=774, as shown in Fig. 8. Second we consider the case in
which the vortex-antivortex pair and the quasiparticle move
in the opposite directions, letting the positive vortex be at
�Qx1 ,Qy1�= �0,−500� and the negative vortex at �Qx2 ,Qy2�
= �0,500�: we find that the total shadow is greatly reduced:
S1+S2=332, as shown in Fig. 9. In both cases, during the
time scale of the calculation, the vortex pair moves by only
0.01. We conclude that the relative motion of vortices and
excitations has a strong effect on the shadow.

Now we examine the dependence of the Andreev reflec-
tion on D. First, we consider the case in which the quasipar-
ticle and the vortex pair move in the same direction. We said
that, at D=1000, the total shadow is S1+S2=774. If we re-
duce D, the total shadow increases, and at the value D
=940 the two shadows merge into a single shadow of size
S1+S2=940. Upon further reduction in D, the total shadow
decreases; for example, when D=100, S1+S2=122, and
when D=10 we have S1+S2=34. Second, we consider the
case in which the quasiparticle and the vortex pair move in
opposite directions. We have said that if D=1000 the total
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FIG. 10. Trajectories of quasiparticles �solid lines� of initial mo-
mentum �0= �1.0001,0� and initial position �−1�104 ,Y0� for
varying Y0, interacting with a configuration of five positive vortices
�denoted by crosses� initially located at �−250,0�, �0,0�, �250,0�,
�250,−250�, and �−250,−250�. The reflected quasiholes are indi-
cated as dotted lines; the shadow of the vortex configuration is the
thick gray line.

FIG. 8. Andreev reflection of quasiparticles from the vortex-
antivortex pair traveling in the same direction. The solid lines de-
note quasiparticles traveling left to right; the dotted lines denote the
reflected quasiholes. The solid double arrow denotes the path of the
vortex, initially located at �Qx1 ,Oy1�= �0,500� with separation D
=1000; the dash-dotted double arrow denotes the path of the anti-
vortex, initially located at �Qx2 ,Qy2�= �0,−500�. The thick vertical
gray lines denote the shadows of the vortices.
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FIG. 9. Andreev reflection of quasiparticles from the vortex-
antivortex pair, with separation D=1000, traveling in the opposite
direction. The solid lines denote quasiparticles traveling left to
right; the dotted lines denote the reflected quasiholes. The dash-
dotted double arrow denotes the path of the vortex, initially located
at �Qx1 ,Qy1�= �0,−500�; the solid double arrow denotes the path of
the antivortex, initially located at �Qx2 ,Qy2�= �0,500�. The thick
vertical gray lines denote the shadows of the vortices. Note that the
shadows are much smaller than in Fig. 8.
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shadow is only S1+S2=332. If D decreases, S1+S2 decreases
too: at D=100 and D=10 we have S1+S2=222 and 88, re-
spectively. We conclude that, independently of D, the total
shadow of a vortex pair traveling in the opposite direction of
the quasiparticle is about half that of a vortex pair traveling
in the same direction.

The shadow of the vortex-antivortex pair also depends on
the angle � between the direction of propagation of the qua-
siparticle and the direction of motion of the vortex-antivortex
pair. Consider a vortex-antivortex pair of separation D=100.
We have already seen that if �=0 �vortex pair moving in the
same direction as the quasiparticle�, then S=122. If the posi-
tive vortex is at �35.33,35.33� and the negative vortex is at
�−35.33,−35.33�, the angle is �=−45° and the shadow in-
creases to 168. If the positive vortex is at �50,0� and the
negative vortex at �−50,0�, the angle is �=−90° and the
shadow increases further to S=233. Finally, as said before, if
the positive vortex is at �0,−50� and the negative vortex is at
�0,50� �the vortex pair moving in the direction opposite to
that of the quasiparticle�, then �=−180° and S=222.

VI. MANY VORTICES

We assume again that the quasiparticle has initial momen-
tum �0= �1.0001,0� and initial position �X0 ,Y0� with X0
=−1�104; we vary Y0 and determine the total shadow of
some simple vortex configurations.

In the first numerical experiment we initially place five
vortex points in the square −250�X�250, −250�Y �250.
More precisely, the initial positions of the vortices are
�−250,0�, �0,0�, �250,0�, �250,−250�, and �−250,−250�.

If the vortices have the same �positive� polarity, they ro-
tate around each other, forming the two-dimensional equiva-
lent of a vortex bundle of total circulation 5
; we find �see
Fig. 10� that the total shadow of the vortex configuration is

S=1238, which is less than five times the shadow of five
individual vortices.

If we change the sign of some of the vortices, the total
shadow which is cast changes dramatically. For example, let
the vortices at �0,0�, �0,250�, and �250,0� be positive, and the
vortices at �−250,0� and �0,−250� be negative. The net cir-
culation is now 
 and the total shadow is S=585 �see Fig.
11�, which is much less than the previous value, but still
more than the shadow of a single isolated vortex. A similar
value of the total shadow, S=589, is obtained if the positive
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FIG. 11. Trajectories of quasiparticles �solid lines� of initial mo-
mentum �0= �1.0001,0� and initial position �−1�104 ,Y0� for
varying Y0, interacting with an initial configuration of three positive
vortices �denoted by crosses� located at �0,0�, �250,0�, and �0,250�
and two negative vortices located at �−250,0� and �0,−250� de-
noted by circles. The reflected quasiholes are indicated as dotted
lines; the shadow of the vortex configuration is the thick gray line.
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FIG. 12. Trajectories of quasiparticles �solid lines� of initial mo-
mentum �0= �1.0001,0� and initial position �−1�104 ,Y0� for
varying Y0, interacting with an initial configuration of three positive
vortices �crosses� located at �0,0�, �0,250�, and �0,−250� and two
negative vortices �circles� located at �250,0� and �−250,0�. The re-
flected quasiholes are indicated as dotted lines; the total shadow of
the vortex configuration, S=589, is the thick gray line. Note the gap
in the shadow within the interval −95�Y0�0.
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FIG. 13. Schematic trajectories of quasiparticles �solid arrows�
of initial momentum �0= �1.0001,0� and initial position �−1
�104 ,Y0� for varying Y0 interacting with an initial configuration of
ten positive vortices �crosses� located at �−250,0�, �−250,250�,
�−125,−125�, �0,−250�, �0,250�, �125,125�, �250,−250�, �250,0�,
and �250,250�. The reflected quasiholes are indicated as dashed ar-
rows. The thick gray vertical lines indicate the shadows of the vor-
tices. The total shadow is S=2445.
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vortices are at �0,0�, �0,250�, �0,−250� and the negative vor-
tices are at �−250,0�, �250,0�, which corresponds to the same
total circulation 
 as before �see Fig. 12�.

In the second numerical experiment we increase the vor-
tex density and place ten vortices �twice as many as before�
in the same square −250�X�250, −250�Y �250. We con-
sider three cases: �i� ten vortices of the same polarity �total
circulation 10
, see Fig. 13�, which yields the total shadow
S=2445 �about twice the shadow of a bundle of five vorti-
ces�; �ii� five vortices and five antivortices �total circulation
is zero, see Fig. 14�, which yields S=902; �iii� five vortex-
antivortex pairs �total circulation zero, see Fig. 15�, which
yields S=209.

We have found that it is possible that, upon impinging on
complex vortex configurations, quasiparticles experience
multiple reflections, which can be classical, Andreev, or both.
An example of multiple Andreev reflection is shown in Fig.
16.

VII. CONCLUSIONS

In conclusion, the above numerical experiments with
simple vortex configurations show that partial screening

(b)(a)

FIG. 16. Left: trajectory of the quasiparticle with initial momentum �0= �1.0001,0� and position �X0 ,Y0�= �−1�104 ,10� in the presence
of five positive vortices and five negative vortices as in Fig. 14. Note the multiple reflections before the particle’s escape from the vortex
region. The arrows indicate the direction of motion. Right: plot of �2−1 vs time � corresponding to a small time interval just before the
escape. Note that the quasiparticle turns into a quasihole many times, before escaping as a quasiparticle.
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FIG. 14. Schematic trajectories of quasiparticles �solid arrows�
of initial momentum �0= �1.0001,0� and initial position �−1
�104 ,Y0� for varying Y0, interacting with an initial configuration
of five positive vortices �crosses� located at �−250,−250�,
�−250,250�, �−125,−125�, �0,250�, and five antivortices �circles� at
the �−250,0�, �0,−250�, �125,125�, �250,−250�, and �250,250�. The
reflected quasiholes are indicated as dashed arrows. The thick gray
vertical line indicates the shadow of the vortices. The total shadow
is S=902.

−500 0 500
−300

−100

100

300

X

Y

FIG. 15. Schematic trajectories of quasiparticles �solid arrows�
of initial momentum �0= �1.0001,0� and initial position �−1
�104 ,Y0� for varying Y0, interacting with an initial configuration of
five vortex-antivortex pairs located at: vortex at �−250,−240� and
antivortex at �−250,−250�, vortex at �−250,250� and antivortex at
�−250,−240�, vortex at �−125,−30� and antivortex at �−132,−36�,
vortex at �0,115� and antivortex at �5,107�, vortex at �250,−125�
and antivortex at �250,−135�. �Note that the distance between the
vortex and the antivortex in each pair is 10 nondimensional units
and cannot be distinguished in this figure.� The schematic reflected
quasiholes are indicated as dashed arrows. The thick gray vertical
lines indicate the shadows of the vortices. The total shadow is S
=209.
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takes place. The total Andreev shadow of a vortex system is
not necessarily the sum of the shadows of individual vorti-
ces, and depends not only on the distance but also on the
relative orientation between quasiparticles and vortex mo-
tion. This does not mean that the interpretation given to re-
cent experiments is incorrect. It is possible that, for a large,
random vortex system, the partial screening effects which we
have found average out. If this is the case, screening effects
can be taken into account by introducing a prefactor prob-
ably of order one for the total shadow, hence for the vortex
line density which is inferred. Numerical investigations in
three dimensions with realistic vortex line density are
needed.

How random are vortex configurations of current experi-
ments? Probably only the recently discovered16,17 ultraquan-
tum regime is truly random. Homogeneous isotropic turbu-
lence contains coherent vortex structures47–49 and is
organized in scales with different energy per scale. On the
other hand, provided we are interested only in large-scale
properties averaged over a large region, such as the total
vortex length, the partial screening effects can be accounted
as said above.

The situation is very different when we move to rotating
turbulence28–30 and inhomogeneous turbulence, particularly
if there are turbulent fronts. In these cases there is large scale
anisotropy, and the Andreev reflection technique must be
used with more care than we used to. The good news is that,
by combining Andreev reflection measurements in different
directions and numerical calculations such as those we have
presented, it should be possible to gain more information
about the geometry and the anisotropy of the turbulence.

Our results also indicate that the problem of interaction
between rotons and quantized vortices in 4He,36 leading to
calculation of the mutual friction, should be reconsidered in
view of possible screening effects analyzed above in Secs.
IV and V.
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